Request Information
TURKEY: +90 505 682 2102 | BRAZIL: 55.19.3816-8218 | EU: 359 2 4801900 | CHINA: 86-21-36120226 | INDIA: 91 9624009994 | CALL USA: 631.467.6814

Ultraflex in Scientific Articles

//Ultraflex in Scientific Articles
Ultraflex in Scientific Articles 2017-07-17T12:38:40+00:00

Ultraflex-in-Scientific-Articles

Ultraflex has provided custom induction heating or radiofrequency (RF) technologies for scientific research that has been published in prestigious scholarly journals, including as Nature and Science.

Nanoparticle Research Articles

Stanley, et al. achieve targeted activation and inhibition of neuronal activity in vivo in mice to control feeding and glucose homeostasis. Nanoparticle technology combined with radiofrequency (RF) induction heat treatment on the mice using a custom Ultraflex coil allowed for acute activation of glucose-sensing neurons. Their method avoids the need for permanent implants and can potentially be applied to study or regulate other neural processes.
S.A. Stanley, L. Kelly, K.N. Latcha, S.F. Schmidt, X. Yu, A.R. Nectow, J. Sauer, J.P. Dyke, J.S. Dordick, and J.M. Friedman
Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism.
Nature 531 7596 (2016): 647.
www.nature.com/nature/journal/v531/n7596/full/nature17183.html

————————————————————————————————

Stanley, et al. develop a repeatable method for regulating gene expression in vivo in mice using iron oxide nanoparticles and radiofrequency (RF) induction heat treatment. They develop the biotechnology to use noninvasive genetically-encoded nanoparticles to potentially avoid the need for nanoparticle injection. Using a custom Ultraflex system, this technology allows for robust, remote temporal control of gene expression.
S.A. Stanley, J. Sauer, R.S. Kane, J.S. Dordick, and J.M. Friedman
Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles.
Nature Medicine 21 1 (2015): 92.
www.nature.com/nm/journal/v21/n1/abs/nm.3730.html

————————————————————————————————

Stanley, et al. combine nanotechnology, bioengineering, and radiofrequency (RF) induction heating to remotely regulate protein production in vivo in mice using custom Ultraflex technology. Their technique allows for the stimulation of insulin production by heating genetically encoded ferritin nanoparticles. This landmark paper provides the foundation to combine nanotechnology and RF induction heating to activate cells.
S.A. Stanley, J.E. Gagner, S. Damanoour, M. Yoshida, J.S. Dordick, and J.M. Friedman
Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice.
Science 336 6081 (2012): 604.
science.sciencemag.org/content/336/6081/604
Induction in Industry Articles and Patents

Induction heating systems have wide range of applications. Brazing process – joining two metal parts using filler material, is important part of these. Focus of this article is on the induction heating process implemented in brazing solutions. A brief review of the process is given at the first part. General classification of induction heating systems is described for quick reference. Theoretical and experimental guide lines are included to help during proper system selection and solution implementation.
D.N. Grozdanov and N.L. Hinov
Industrial application of induction brazing systems.
International Scientific Conference Electronics (ET). IEEE (2016).
ieeexplore.ieee.org/abstract/document/7753481/
Y.C. Chang
Design of desktop-scale metal wire-feeding prototype machine.
Master’s Thesis. The University of Texas at Austin (2016).
repositories.lib.utexas.edu/handle/2152/44555
Friedman and S. Stanley
Compositions and methods to modulate cell activity.
US Patent No. 9399063 (2016)
www.google.com/patents/US9399063
Maginnis and G. Paskalov
Method of rapid sintering of ceramics.
US Patent No. 8845951 (2014)
www.google.com/patents/US8845951